Adaptive Modularized Recurrent Neural Networks for Electric Load Forecasting
نویسندگان
چکیده
In order to provide more efficient and reliable power services than the traditional grid, it is necessary for smart grid accurately predict electric load. Recently, recurrent neural networks (RNNs) have attracted increasing attention in this task because can discover temporal correlation between current load data those long-ago through self-connection of hidden layer. Unfortunately, RNN prone vanishing or exploding gradient problem with increase memory depth, which leads degradation predictive accuracy. Many architectures address at expense complex internal structures increased network parameters. Motivated by this, article proposes two adaptive modularized RNNs tackle challenge, not only solve effectively a simple architecture, but also achieve better performance fewer parameters other popular RNNs.
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملNeural Networks in Electric Load Forecasting: A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neural networks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANN oriented applications for forecasting are given in the literature. These are classified into five groups: (1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs in...
متن کاملMedium Term Electric Load Forecasting Using TLFN Neural Networks
This paper develops medium term electric load forecasting using neural networks, based on historical series of electric load, economic and demographic variables. The neural network chosen for this work is the Time Lagged Feedforward Network (TLFN), which combines conventional network topology (multilayer perceptron) with good handling of time dependencies by means of gamma memory. This is a ver...
متن کاملNeural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کاملMulti-Context-Recurrent Neural Network for Load Forecasting
A recurrent neural network is studied in this paper. A multi–context–recurrent neural network is defined and trained with back propagation, and is then applied to the short–term energy load forecasting task. The idea is to predict a daily maximum load for an arbitrary month ahead. A multi–context–recurrent neural network model was simulated and trained with different training sets to predict th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Database Management
سال: 2023
ISSN: ['1533-8010', '1063-8016']
DOI: https://doi.org/10.4018/jdm.323436